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Chapter One 

“Design of the Control System in State 

Space”  

1.1 Controllability and Observability Test: 

1.1.1 Controllability Test: 

A system is said to be controllable at      if it is possible means of a control input      to 

transfer the system from any initial state       to any other state in a finite interval of time. 

Consider the single input single output system: 

 ̇        

     

where                                                                   

It can be showed that if the matrix   forms as:   

  [               ]      

is of rank n (when n is the order of the system) then the system is completely state 

controllable. The rank of matrix    is n, if the matrix   is non-singular or     [ ]   . 

Example 1.1: Given the following system: 

[
 ̇ 

 ̇ 
]  [

  
   

] [
  

  
]  [

 
 
]   

Is the system completely controllable? 

Solution: 

Since the order of the given system is n=2 

    [    ] 

   [
  
   

] [
 
 
]  [

 
 
] 

Therefore,   [
  
  

]     [
  
  

]    

Since the    [ ]   , so the system is not completely controllable. 

Example 1.2: Given the following system: 
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[
 ̇ 

 ̇ 
]  [

  
   

] [
  

  
]  [

 
 
]   

Is the system completely controllable? 

Solution: 

Since the order of the given system is n=2 

    [    ] 

   [
  
   

] [
 
 
]  [

  
   

]     [
  
   

]     

Since the    [ ]   , so that the given system is completely controllable. 

If the given system is Multi Input Multi Output (MIMO) system or Multi Input Signal Output 

(MISO) system: 

 ̇        

     

where                                                      

The system is said completely controllable if: 

   [   ]    

Example 1.3: Given the following system: 

  

[
 ̇ 

 ̇ 
]  [

  
    

] [
  

  
]  [

  
  

] [
  

  
] 

Is the system completely controllable? 

Solution: 

Since the order of the given system is n=2 

  [    ]  

   [
  
    

] [
  
  

]  [
  
    

] 

   [
  
  

  
    

] 

Because   is not square matrix we have to find the determinate of     

    [
  
  

  
    

] [

  
  
 
 

  
  

]  [
   
    

] 

   [   ]     [
   
    

]     

Since the    [   ]   , so that the given system is completely controllable. 
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1.1.2 Observability Test: 

A system is said to be Observable if the state      can be determined from knowledge of the 

input      and the output      over a finite interval of time. Consider the single input single 

output system: 

 ̇        

     

where                                                                 . 

to test the Observability, from the matrix   that give as: 

  

[
 
 
 
 

 
  
   

 
     ]

 
 
 
 

 

If the rank of   is n then the system is completely observable. In other words, if    [ ]    

then the given system is completely observable.  

Example 1.4: Consider the system: 

[
 ̇ 

 ̇ 
]  [

  
   

] [
  

  
]  [

 
 
]   

  [   ] [
  

  
] 

Is the system completely observable? 

Solution: 

Since the order of the given system is n=2, then: 

  [
 
  

] 

   [   ] [
  
   

]  [  ] 

   [
  
  

]     [
  
  

] 

Since    [ ]   , so that the given system is completely observable. 

If the given system is multi input multi output system: 

 ̇        

     

where                                                      

The system is said completely observable if: 

   [   ]    

Example 1.5: Given the following system: 
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[
 ̇ 

 ̇ 
]  [

  
    

] [
  

  
]  [

  
  

] [
  

  
] 

[
  

  
]  [

  
  

] [
  

  
] 

Is the system completely controllable? 

Solution: 

Since the order of the given system is n=2 

  [
 
  

]  [

  
  
 
  

 
  

] 

Because   is not square matrix we have to find the determinate of     

 

    [
     
     

] [

  
  
 
  

 
  

]  [
  
   

] 

   [   ]     [
  
   

]     

Since the    [   ]   , so that the given system is completely observable. 

 

 

 

 

 

  

  

 

1.2 State Feedback Controller (Poles Placement) 

Let the single input single output system be given by: 

 ̇                                     

                                                  

if state feedback control           , then  the control input to given system is given by 

               , the system with state feedback system is given in Figure 1.1: 

 

 

 

Home Work: 

Test the Controllability and the Observability of the following systems: 

1)   [
   
   
     

]     [
 
 
 
]    [    ] 

2)   [
   
   
   

]    [
  
  
  

]    [
   
   

] 

3)  ⃛     ̈      ̇           ̇      . 

 

 

r(t) y(t) 

      

+ 

+ 



8 

 

 

 

 

 

 

The state feedback controller is given by: 

                                        

where   [        ] is     feedback vector with constant elements. 

  ̇             [    ]                                     

Or:  ̇  [    ]                                                                           

It can be show that if the pair (A,b) is completely controllable, then the vector k exist and can 

give any arbitrary set of Eigen values (poles) of matrix [    ]  or roots of characteristic 

equation: 

|    [    ] |        

Or: |       |                                                                                               

Example1.6: Given the system: 

  [
  
    

]    [
 
 
]  . Find the constant gains vector   to move system poles to -4, -5? 

Solution: 

To find the poles of the open loop system (given system): 

|    |    

|[
  
  

]  [
  
    

]|  |[
   
    

]|    

                    

             

Therefore, the poles of the open loop system are:              . 

Test the controllability: 

Since the given system is second order n=2: 

  [    ]  [
  
   

]     [
  
   

]      

Therefore, the system is completely controllable. 

To design the state feedback system (find the k vector), the new characteristic equation should 

be find.  

Since the desired poles are              , then the new char. Eq. is: 
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From eq. 1.6 |       |   , we obtain: 

 

|[
  
  

]  [
  
    

]  [
 
 
] [    ]|    

|[
   
   

]  [
  
    

]|    |[
   

          
]|    

                    

                                                    

Compare eq. (I) and eq. (II) we obtain: 

                            

                             

Example 1.7: for same system given in example 1.6, find the gain vector k if the required 

parameters of the new system are                        . 

Solution: 

The standard char. Eq. of the second order system is given by: 

           
     

                                 

From example 1.6, the new char. Eq. is 

                                                    

 

By comparing eq. (I) and eq. (II) we obtain: 

                               

                                    

1.2.2 General Method to Determine the Matrix k: 

Let us defined the following: 

                                    

                                        

                  

And,                 

Check the controllability condition for the system. If the system is completely state 

controllable, then the state feedback gain vector can be obtained from the following equation: 

                                                                                               

Example 1.8: Given the following system: 
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  [
   
    
    

]        [
 
 
 
] 

Find the state feedback vector k to place the closed loop system poles at -2, -1 and -1? 

Solution: 

Find the controllability of the given system: 

Since the given system is third order system then : 

  [      ] 

   [
 
  
 

]           [
 
  
 

]     [
   
     
   

] 

   [
   
     
   

]     

The system is controllable. 

                      

                            

                     

                [
      
      

 

] 

Since  

                  

 

[      ] [
      
      

 

]           

    
                           

   
                                 

                                           

                            

To conform the solution is ok we have to find the following determinant of 

                

1.2.3 Determination of Matrix k Using Ackermann’s Formula: 

To calculate the given vector k for n
th

 order system: 

If the system is controllable then 

  [       ]

 [     ][            ]                        
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where       represented the matrix polynomial formed with coefficient of the desired 

characteristic equation     . 

 

 

 

 

Example 1.9:  Given A system with ; 

  [
  
  

]    [
 
 
] 

Find the values of gains k to locate the poles of closed loop system at: 1) -4,-4;  2) -4-j4 ,        

-4+j4.  Using Ackermann’s formula? 

Solution: 

1) Test the controllability 

  |    |    [
  
  

] 

          [
  
  

]     

It is controllable. 

[    ]  [  ][   ]        

[   ]   [
  
  

]
  

 [
  
  

] 

                          

                [
  
  

]  [
  
  

]  [
   
   

]  [
   
   

] 

 [    ]  [  ] [
  
  

] [
   
   

]  [   ] 

               

2) For                            

                                

                [
  
  

]  [
  
  

]  [
   
   

]  [
   
   

] 

 [    ]  [  ] [
  
  

] [
   
   

]  [   ] 

               

 

 

Example 1.10:  Consider the regulator system. The plant is given by: 
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[

 ̇ 

 ̇ 

 ̇ 

]  [
   
   
      

] [

  

  

  

]  [
 
 
 
]   

Find the gain vector k to locate the poles at: 

                                   . 

Solution:   

Since, the given system is third order system, then the Ackermann’s formal is written as:  

[      ]  [   ][      ]        

To test the controllability of the given system 

          [      ]     

Therefore, the system is completely controllable. 

                                             

                       

   [
      
     

           
]         [

    
         
        

]     

    [
    
    

           
] 

       [
      
      
        

] 

  [      ]  [
   
    
     

] 

    [
   
   
   

] 

[      ]  [   ] [
   
   
   

] [
      
      
        

]  [      ] 

1.2.4 Determination of Matrix k Using Transformation Matrix T: 

Suppose that the system is defined by 

 ̇        

 

and the control signal is given by 

      

The feedback gain matrix k that forces the eigenvalues of (A – bk) to be            (desired 

values) can be determined by the following steps: 
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Step 1: Check the controllability condition for the system. If the system is completely state 

controllable, then use the following steps: 

Step 2: From the characteristic polynomial for matrix A, that is, 

|    |        
               

determine the values of a1, a2, .. . , an. 

Step 3: Determine the transformation matrix T that transforms the system state equation into 

the controllable canonical form. It is not necessary to write the state equation in the 

controllable canonical form. All we need here is to find the matrix T. The transformation matrix 

T is given by: 

     

Where the matrix W is given by: 

 

 

 

 

 

 

 

 

And  

  [               ] 

Step 4: Using the desired eigenvalues (desired closed-loop poles), write the desired 

characteristic polynomial: 

                          
               

and determine the values of            

Step 5: The required state feedback gain matrix k can be determined from the following 

Equation 

  [         ]

 [                         ]                

 

Example 1.11: For example 1.10, used eq. 1.9 to determine the matrix k. 

Solution:   

Find the char. Eq. of the open loop system. 
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|    |  |
    
    
     

|               

By comparing with       
        , we find that: 

                   

The desired characteristic equation is: 

                                             

By comparing with       
        , we find that: 

 

                       

 

To find the matrix      

  [      ]  [
   
    
     

] 

  [
   
   
   

] 

  [
   
    
     

] [
   
   
   

]  [
   
   
   

] 

  [      ]  [               ]    

 

  [      ]  [             ]  [      ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H.W: 

Determine the matrix k for the following systems using three different methods: 

1)   [
  

   
  

]      [
 
 
] ; the desired poles of closed loop system at        and 

      . 

2)      
 

 
; the desired poles of closed loop system at          

3)   [
   
   
       

]    [
 
 
 
]; the desired poles of closed loop system at        

                   

4)   [
  
  

]    [
 
 
];              (for the closed loop system). 

5)   [
  
    

]    [
 
 
];                 (for the closed loop system). 
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1.3 Design of Servo Systems: 

In what follows we shall just discuss a problem of designing a type 1 servo system when the 

plant involves an integrator. Assume that SISO system is defined by: 

 ̇        

     

Figure 1.2 shows a general configuration of the type 1 servo system when the plant has an 

integrator. Here we assumed that     . 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Figure 1.2 the state feedback control signal is given by: 

   [         ] [

  

  
 
  

]            

or:                                              

where r is assumed step function applied at t=0 (       .  

Then, the system dynamics can be describe by: 

 ̇                                         

We shall design the type 1 servo system such that the closed-loop poles are located at desired 

positions. The designed system will be an asymptotically stable system,     will approach 

the constant value r, and      will approach zero. (r is a step input). 

Notice that at steady state we have: 

 ̇                                            

where        (constant). 

 
Figure 1.2 The servo system when the plant has an integrator 
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By subtracting Eq. (1.10) from Eq. (1.11) we obtain: 

 ̇     ̇          [         ]                                         

If we define:                 then eq. (1.12) becomes: 

 ̇                                                                    

The steady-state values of x(t) and u(t) can be found as follows: At steady state (t =  ), we 

have, from Equation (1.11), 

 

 ̇                                     

                                     

Also,       can be obtained as: 

                                    

Example 1.12: Design a type 1 servo system when the plant transfer function has an 

integrator. Assume that the plant transfer function is given by: 

    

    
 

 

           
 

The desired closed loops are          √                Assume that the reference 

input r is unit step function. Obtain the unit step response of the designed system. 

Solution:  

The state space representation of the system becomes: 

[
 ̇ 

 ̇ 

 ̇ 

]  [
   
   
     

] [

  

  

  

]  [
 
 
 
]   

  [   ] [

  

  

  

] 

Using Ackerman’s formula we can find the gains vector k. (H.W. Find k). Or using the 

following MATLAB codes, we can find k. 

A=[0 10;0 0 1;0 -2 -3]; 

B=[0;0;1]; 

J=[-2+j*2*sqrt(3) -2-j*2*sqrt(3) -10]; 

K=acker(A,B,J) 

After run this program the values of k are: 

  [       ] 

The unit step response of the designed system can be obtained as follows: 

     [
   
   
     

]  [
 
 
 
] [       ]  [

   
   

          
]  
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The state equation of the given system with k matrix is given by:  

[
 ̇ 

 ̇ 

 ̇ 

]  [
   
   

          
] [

  

  

  

]  [
 
 

   
]   

  [   ] [

  

  

  

] 

By using the following MATLAB program, the unit step response can be ploted. 

% Unit step response 

clc; 

clear all; 

% Enter the state matrix, control matrix and output matrix of the given 

% system 

A=[0 1 0;0 0 1;0 -2 -3]; 

b=[0;0;1]; 

c=[1 0 0]; 

d=[0]; 

% Enter the state matrix, control matrix and output matrix of the designed  

% system  

AA=[0 1 0;0 0 1;-160 -54 -14]; 

bb=[0;0;160]; 

c=[1 0 0]; 

d=[0]; 

% Enter step command and plot command 

t=0:0.1:5; 

y1=step(A,b,c,d,1,t); 

y2=step(AA,bb,c,d,1,t); 

plot (t,y1,t,y2) 
  

The resulting unit step response curve is shown in Figure 1.3. 

  

 

 

  

 

 

 

 

 

 

 

 

 

 
 

Figure 1.3 unit step response of given system in Example 1.12 
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1.4 State Observers: 

In the pole-placement approach to the design of control systems, we assumed that all state 

variables are available for feedback. In practice, however, not all state variables are available 

for feedback. Then we need to estimate unavailable state variables. 

Estimation of immeasurable state variables is commonly called observation. A device (or a 

computer program) that estimates or observes the state variables is called a state observer, or 

simply an observer. If the state observer observes all state variables of the system, regardless 

of whether some state variables are available for direct measurement, it is called a full-order 

state observer. There are times when this will not be necessary, when we will need 

observation of only the immeasurable state variables, but not of those that are directly 

measurable as well. For example, since the output variables are observable and they are 

linearly related to the state variables, we need not observe all state variables, but observe only 

n - m state variables, where n is the dimension of the state vector and m is the dimension of the 

output vector. 

An observer that estimates fewer than n state variables, where n is the dimension of the state 

vector, is called a reduced-order state observer or, simply, a reduced-order observer. If the 

order of the reduced-order state observer is the minimum possible, the observer is called a 

minimum-order state observer or minimum-order observer. In this section, we shall discuss 

both the full-order state observer and the minimum-order state observer. 

1.4.1 State Observer: 

In the following discussions of state observers, we shall use the notation  ̃ to designate the 

observed state vector. In many practical cases, the observed state vector  ̃ is used in the state 

feedback to generate the desired control vector. 

Consider the plant defined by 

 ̇                          

                                   

The observer is a subsystem to reconstruct the state vector of the plant. The mathematical 

model of the observer is basically the same as that of the plant, except that we include an 

additional term that includes the estimation error to compensate for inaccuracies in matrices A 

and b and the lack of the initial error. The estimation error or observation error is the 

difference between the measured output and the estimated output. The initial error is the 

difference between the initial state and the initial estimated state. Figure 1.4 shows the block 

diagram of the system and the full-order state observer. 
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Thus, we define the mathematical model of the observer to be  

  ̃

  
   ̃            ̃  

         ̃                                

where  ̃ is the estimated state and  ̃    ̃ is the estimated output. The inputs to the observer 

are the output y and the control input u. Matrix   , which is called the observer gain matrix, is 

a weighting matrix to the correction term involving the difference between the measured 

output y and the estimated output  ̃    ̃. This term continuously corrects the model output 

and improves the performance of the observer 

1.4.2 Full-Order State Observer: 

To obtain the observer error equation, let us subtract Equation (1.16) from Equation (1.18): 

 ̇  
  ̃

  
      ̃          ̃             ̃                 

Ee 

  

 

Figure 1.4 Block diagram of systems and full-order state observer 
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Define the difference between x and  ̃ as the error vector e, or 

     ̃ 

Then equation 1.19 can be written as: 

 ̇                                                 

From Equation (1.20), we see that the dynamic behavior of the error vector is determined by 

the eigenvalues of matrix      . If matrix       is a stable matrix, the error vector will 

converge to zero for any initial error vector e(0). That is  ̃    will converge to      regardless 

of the values of       and  ̃   . If the eigenvalues of matrix       are chosen in such a 

way that the dynamic behavior of the error vector is asymptotically stable and is adequately 

fast, then any error vector will tend to zero (the origin) with an adequate speed. 

If the plant is completely observable, then it can be proved that it is possible to choose 

matrix  , such that       has arbitrarily desired eigenvalues. 

There are three ways by which the state observer gain matrix    can be determined: 

 Transformation Approach to obtain state observer gain matrix   : 

To obtain the state observer gain matrix, follow the steps below: 

Step 1: Check the Observability condition for the system. If the system is completely state 

observable, then use the following step: 

Step 2: use the following equation to find   ; 

    

[
 
 
 
 

     

         
 

     

     ]
 
 
 
 

        

[
 
 
 
 

     

         
 

     

     ]
 
 
 
 

                          

Where    is an     matrix (   

[
 
 
 
 

   

   
 

       

   ]
 
 
 
 

 ), and  

  [                            ] 

And 

 

 Direct Substitution Approach to obtain state observer gain matrix   : 
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Similar to the case of pole placement, if the system is of low order, then direct substitution of 

matrix    into the desired characteristic polynomial may be simpler. For example, if x is a 

   , then write the observer gain matrix    as: 

 

   [

   

   

   

] 

Check the Observability condition for the system. If the system is completely state 

observable, then substitute the    matrix into the desired characteristic polynomial: 

|          |                     

By equating the coefficients of the like powers of s on both sides of this last equation, we can 

determine the values of    ,    , and    . This approach is convenient if n = 1, 2, or 3, where 

n is the dimension of the state vector x. 

 Ackermann’s formula to obtain state observer gain matrix   : 

Check the Observability condition for the system. If the system is completely state 

observable, then use the following equation to obtain state observer gain matrix   : 

        

[
 
 
 
 
 

 
  
   

 
     

   ]
 
 
 
 
 
  

[
 
 
 
 
 
 
 
 ]
 
 
 

                              

 

Example 1.13: Consider the system  

  [
     
  

]         [
 
 
]           [  ] 

We use the observed state feedback such that      ̃. Design a full-order state observer, 

assuming that the desired eigenvalues of the observer matrix are: 

                          

Solution: 

The design of the state observer reduces to the determination of an appropriate observer gain 

matrix   . 

Let us test the Observability of the given system 

  [
 
  

]  [
  
  

]         |
  
  

|     

The system is completely observable. 

Method 1: We shall determine the observer gain matrix by use of Equation (1.21) 

Since the characteristic equation of the given system is: 



22 

 

|    |  |
      
   

|                    

                                     

The desired char. Eq. is: 

                              

Hence: 

                      

  [
  
  

]  and   [
  
  

] 

          [
  
  

] 

          [
     

     
]  [

  
  

] [
        

    
]  [

     
  

] 

Method 2:  

|        |    

|[
  
  

]  [
     
  

]  [
   

   
] [  ]|  |

          

       
|                     

Since the desired char. Eq. is: 

             

                           

Method 3: We shall use Ackermann's formula given by Equation (1.22): 

        [
 
  

]
  

[
 
 
] 

where:  

                              

Thus, 

                  [
        
       

] 

   [
        
       

] [
  
  

] [
 
 
]  [

     
  

] 

1.4.2.1 Effects of the Addition of the Observer on a closed-loop System: 

In the pole-placement design process, we assumed that the actual state x(t) was available for 

feedback. In practice, however, the actual state     may not be measurable, so we will need 

to design an observer and use the observed state  ̃    for feedback as shown in Figure 1.5. 

The design process, therefore, becomes a two-stage process, the first stage being the 

determination of the feedback gain matrix    to yield the desired characteristic equation and 

the second stage being the determination of the observer gain matrix    to yield the desired 

observer characteristic equation. 
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Consider the completely state controllable and completely observable system defined by the 

equation: 

 ̇        

     

For the state feedback control based on the observed state  ̃    

     ̃ 

With this control, the state equation becomes: 

 ̇        ̃                ̃                                           

The difference between the actual state      and the observed state  ̃   has been defined as 

the error     : 

           ̃    

So that, the equation 1.23 can be rewritten as: 

 ̇                                                                             

 

Not that the observer error equation was given by Equation 1.20: 

 

Figure 1.5 Observer state feedback control 
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 ̇           

So, we obtain that: 

[
 ̇
 ̇
]  [

      
      

] [
 
 
]                                                         

Eq. 1.25 describes the dynamics of the observed-state feedback control system. 

The characteristic equation for the system is: 

|
          

         
|    

or 

|       ||        |                                       

Notice that the closed-loop poles of the observed-state feedback control system consist of the 

poles due to the pole-placement design alone and the poles due to the observer design alone. 

This means that the pole-placement design and the observer design are independent of each 

other. They can be designed separately and combined to form the observed-state feedback 

control system. Note that, if the order of the plant is n, then the observer is also of nth order (if 

the full-order state observer is used), and the resulting characteristic equation for the entire 

closed-loop system becomes of order 2n. 

1.4.2.2 Transfer Function of the observer based controller: 

Assume that the plant is completely observable. The equations for the observer are given by: 

  ̃

  
            ̃                         

     ̃                                 

By taking the Laplace transform of Equation (1.27), assuming a zero initial condition, and 

solving for  ̃   : 

 ̃                          

By substituting this  ̃    into the Laplace transform of Eq. 1.28, we obtain: 

                             

Then the transfer function is given by: 

    

    
                                            

Figure 1.6 show the block diagram represented for the system. The transfer function (     

             acts as controller for the system.   

The transfer function in eq. 1.29 is called the observer-controller transfer function.  
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Example 1.14 Consider the design of a regulator system for the following plant: 

 ̇        

     

  [
  

     
]         [

 
 
]               [  ] 

Suppose that we use the pole-placement approach to the design of the system and that the 

desired closed-loop poles for this system are at              and             . 

Design the observer controller. 

Solution: 

The state feedback gain matrix   for this case can be obtained as follows: 

  [       ] 

Using this state-feedback gain matrix  , the control signal u is given by: 

       [       ] [
  

  
] 

Suppose that we use the observed-state feedback control instead of the actual-state feedback 

control, or: 

       [       ] [
 ̃ 

 ̃ 
] 

where we choose the observer poles to be at: 

               

Obtain the observer gain matrix    and draw a block diagram for the observed-state feedback 

control system. Then obtain the transfer function 
    

     
for the observer controller, and draw 

another block diagram with the observer controller as a series controller in the feed forward 

path. Finally, obtain the response of the system to the following initial condition: 

     [
 
 
]               [

   
 

] 

The characteristic polynomial is 

|    |  |
   

      
|                    

 

Figure 1.6 the system with controller observer 
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The desired characteristic polynomial for the observer is  

                               

Hence, 

                                  

The observer gain matrix is given as: 

   {[
  
  

] [
  
  

]}
  

[
       
    

]  [
  
    

] 

Since; 

  ̃

  
            ̃                   

[

  ̃ 

  
  ̃ 

  

]  {[
  

     
]  [

  
    

] [  ]  [
 
 
] [       ]} [

 ̃ 

 ̃ 
]  [

  
    

]    

 [
    
         

] [
 ̃ 

 ̃ 
]  [

  
    

]        ̃  [  ] [
 ̃ 

 ̃ 
] 

The block diagram of the system with observed-state feedback is shown in Figure 1.7: 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.7 (a) block diagram of system with observed state feedback. 

              (b) block diagram of transfer function system. 
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 [         ] [
      
         

]
  

[
  
    

]  
               

              
 

The dynamics of the observed-state feedback control system just designed can be described by 

the following equations: For the plant, 

[
 ̇ 

 ̇ 
]  [

  
     

] [
  

  
]  [

 
 
]   

  [  ] [
  

  
] 

For the observer: 

[

  ̃ 

  
  ̃ 

  

]  [
    
         

] [
 ̃ 

 ̃ 
]  [

  
    

]   

   [       ] [
 ̃ 

 ̃ 
] 

The system, as a whole, is of fourth order. The characteristic equation for the system is: 

|       ||        |                                 

                                                      

The characteristic equation can also be obtained from the block diagram for the system shown 

in Figure 1.7b. Since the closed-loop transfer function is: 

    

    
 

               

                                         
 

1.4.3 Minimum-Order Observer: 

The observers discussed thus far are designed to reconstruct all the state variables. In practice, 

some of the state variables may be accurately measured. Such accurately measurable state 

variables need not be estimated.  

Suppose that the state vector      is an n-vector and the output vector      is an m-vector that 

can be measured. Since m output variables are linear combinations of the state variables, m 

state variables need not be estimated. We need to estimate only     state variables. Then 

the reduced-order observer becomes an         order observer. Such an         order 

observer is the minimum-order observer. Figure 1.8 shows the block diagram of a system with 

a minimum-order observer. 
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It is important to note, however, that if the measurement of output variables involves 

significant noises and is relatively inaccurate, then the use of the full-order observer may 

result in a better system performance. 

To present the basic idea of the minimum-order observer, without undue mathematical 

complications, we shall present the case where the output is a scalar (that is, m = 1) and derive 

the state equation for the minimum-order observer. Consider the system: 

 ̇        

     

where the state vector   can be partitioned into two parts    (a scalar) and    [an (n - 1)-

vector]. Here the state variable    is equal to the output y and thus can be directly measured, 

and    is the unmeasurable portion of the state vector. Then the partitioned state and output 

equations become: 

[
 ̇ 

 ̇ 
]  [

      

      
] [

  

  
]  [

  

  
]   

  [  ] [
  

  
] 

where:      is scalar; 

                is         matrix ; 

               is         matrix ; 

               is             matrix; 

 

Figure 1.8 Observer state feedback control system with a minimum order observer 
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              is scalar; 

and         is         matrix. 

Figure 1.9 shows the block diagram of the observed state feedback control system with the 

minimum order observer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Figure 1.9 the state space equation of the minimum order observer is given by: 

  ̃

  
  ̂ ̂   ̂   ̂                             

where:  ̂           ; 

             ̂   ̂             

            ̂          

 ̃   ̂ ̃   ̂                                   

where:  ̂  [
 

    
];        and    ̂  [

 
  

] 

     ̃                                 

The characteristic equation for the minimum-order observer is obtained from Equation (1.30) 

as follows: 

|    ̃|  |            |                        

       ̃  
     ̃  

       ̃      ̃                           

 

Figure 1.9 block diagram of the observed state feedback control system with the minimum order 

observer 
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where              are desired eigenvalues for the minimum-order observer. The observer 

gain matrix    can be determined by first choosing the desired eigenvalues for the minimum-

order observer [that is, by placing the roots of the characteristic equation, Equation (1.33), at 

the desired locations] and then using the procedure developed for the full-order observer with 

appropriate modifications. 

The observer gain matrix    can be obtained using Ackermann’s Formula as shown in the 

following equation: 

         

[
 
 
 
 
 
 

   

      

      
 

 
      

   

      
   ]

 
 
 
 
 
 
  

[
 
 
 
 
 
 
 
 ]
 
 
 

                             

Where:           
     ̃    

     ̃    
       ̃        ̃              

1.4.3.1 Observed-State Feedback Control System with Minimum-

Order Observer: 

For the case of the observed-state feedback control system with full-order state observer, we 

have shown that the closed-loop poles of the observed-state feedback control system consist 

of the poles due to the pole-placement design alone, plus the poles due to the observer design 

alone. Hence, the pole-placement design and the full-order observer design are independent of 

each other. 

For the observed-state feedback control system with minimum-order observer, the same 

conclusion applies. The system characteristic equation can be derived as: 

|       ||            |                         

Example 1.15: Consider the system: 

 ̇        

     

Where:   [
   
   
       

]             [
 
 
 
]               [   ] 

Let  us assume that we want to place the closed loop poles at:  

          √                  

And assume that we choose the desired observer poles to be at: 

               

Design minimum-order observer. 
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Solution: 

Using Ackermann’s Formula, the state feedback gain matrix can be obtained as follows: 

  [     ]. 

 The characteristic equation for the minimum-order observer is: 

|            |                                         

We shall use Ackermann’s formula:  

         [
   

      
]
  

[
 
 
] 

Where;           
             

Since: 

    [
   
   
       

]             [
 
 
 
]; 

            [  ]         [
 
  

]      [
  

     
]                 [

 
 
] 

    {[
  

     
]
 

   [
  

     
]     [

  
  

]} [
  
  

]
  

[
 
 
]  [

  
 
] 

Since; 

  ̃

  
  ̂ ̂   ̂   ̂                      

 ̂            [
  

     
]  [

  
 
] [  ]  [

    
     

]; 

             ̂   ̂             [
    
     

] [
  
 
]  [

 
  

]  [
  
 
]    [

    
    

] 

            ̂          [
 
 
]  [

  
 

]    [
 
 
] 

 [

  ̃ 

  
  ̃ 

  

]  [
    
     

] [
 ̃ 

 ̃ 
]  [

    
    

]   [
 
 
]   

Where: [
 ̃ 

 ̃ 
]  [

 ̃ 

 ̃ 
]     , or 

[
 ̃ 

 ̃ 
]  [

 ̃ 

 ̃ 
]       

If the observed-state feedback is used, then the control signal   becomes: 

     ̃    [

  

 ̃ 

 ̃ 

] 

Figure 1.10 is a block diagram showing the configuration of the system with observed-state 

feedback, where the observer is the minimum-order observer 
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1.4.3.2 Transfer Function of Minimum-Order Observer Based 

Controller: 

From Equations (1.30, 1.31 and 1.32) the transfer function of minimum-order observer is 

given by: 

    

     
 

   

   
  [ ̃(    ̃)

  
 ̃   ̃]                     

Where:   

 ̃   ̂   ̂   

 ̃   ̂   ̂          

 ̃      

 ̃             

We defined the state feedback matrix as: 

  [
  

  
] 

 

Figure 1.10 block diagram showing the configuration of the system with observed-state feedback 
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  is a scalar; and    is         matrix. 

 

1.4.3.3 Design of Regulator Systems with Observer:  

In this section we shall consider a problem of designing regulator systems by using the pole-

placement-with-observer approach. 

Consider the regulator system shown in Figure 1.11. (The reference input is zero). 

The plant transfer function is: 

     
       

           
 

 

 

 

 

 

 

 

 

Using the pole placement approach, design a controller . Assume that we use the minimum-

order observer. (We assume that only the output y is measurable). 

We shall use the following design procedure: 

1. Derive a state-space model of the plant. 

2. Choose the desired closed-loop poles for pole placement. Choose the desired observer 

poles. 

3. Determine the state feedback gain matrix   and the observer gain matrix   . 

4. Using the gain matrices   and    obtained in step 3, derive the transfer function of the 

observer controller. it must be stable controller. 

Design Step 1: the state space equation and the output equation of the given system is 

obtained as: 

[
 ̇ 

 ̇ 

 ̇ 

]  [
   
   
       

] [

  

  

  

]  [
 
  
   

]   

  [   ] [

  

  

  

]  [ ]  

Design Step 2: assume that the desired closed loop poles at: 

                        

 

Figure 1.11 Regulator System 
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Then, the sate feedback gain matrix is given as (using Ackermann’s Formula): 

  [               ] 

Design Step 3: Assume that the desired closed loop poles for observer pole locations as 

follows:           

Then, the observer gain matrix is given as (using Ackermann’s Formula): 

   [
  
    

] 

Design Step 3: We shall determine the transfer function of the observer controller from the 

following equation: 

      
    

     
 

   

   
  [ ̃(    ̃)

  
 ̃   ̃] 

Therefore;  

      
                         

            
 

                          

                  
 

As seen, the poles of the controller are located at lift hand side of s-plane; it means the 

transfer function of the designed controller is stable.   

1.5 Design of Control System with Observers: 

In Section 1.4 we discussed the design of regulator systems with observers. (The systems did 

not have reference or command inputs.) In this section we consider the design of control 

systems with observers when the systems have reference inputs or command inputs. 

In Section 1.4 we discussed regulator systems, whose block diagram is shown in Figure 1.11. 

This system has no reference input, or r = 0. When the system has a reference input, several 

different block diagram configurations are conceivable, each having an observer controller. 

Two of these configurations are shown in Figures 1.12 (a) and (b); we shall consider them in 

this section. 

 

  

 

 

 

 

 

 

 
 

Figure 1.12 a) Control system with observer controller in the feed-forward path. 

                    b) Control system with observer controller in the feed-back path. 
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Configuration 1: Consider the system shown in Figure 1.13. In this system the reference 

input is simply added at the summing point. We would like to design the observer controller 

such that in the unit-step response the maximum overshoot is less than 30% and the settling 

time is about 5 sec. 

In what follows we first design a regulator system. Then, using the observer controller 

designed, we simply add the reference input r at the summing point. 

Before we design the observer controller, we need to obtain a state-space representation of the 

plant. Since   

    

    
 

 

       
 

 

 

 

 

 

 

The state equation of the given system is: 

[
 ̇ 

 ̇ 

 ̇ 

]  [
   
   
    

] [

  

  

  

]  [
 
 
 
]            [   ] [

  

  

  

]  

Assume the desired closed loop poles for pole placement at:                    . And 

the desired observer poles at:        . 

Using Ackermann’s Formula, the state feedback gain matrix   and the observer gain matrix 

   are given as follows: 

  [      ]               [
 
  

] 

The transfer function of the observer controller is obtained by use the following equation:  

      
    

     
 

   

   
  [ ̃(    ̃)

  
 ̃   ̃] 

Therefore; 

      
              

          
 

                                       

                          
 

 

Figure 1.13 Observer Controller in the feed-forward bath 
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The unit-step response curve for this control system is shown in Figure 1.14. The maximum 

overshoot is about 28% and the settling time is about 4.5 sec. Thus, the designed system 

satisfies the design requirements. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15 shows the system without controller: 

 

 

 

 

 

 

 

 

 

 

The Simulink tools of MATLAB program has been used to plot Figures 1.14 and 1.15 as 

shown in Figure 1.16 below: 
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Figure 1.16 

 
Figure 1.14 Unit step input of the controlled system  

 

Figure 1.15 the response of the system without controller 
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Configuration 2: A different configuration of the control system is shown in Figure 1.17. The 

observer controller is placed in the feedback path. The input r is introduced into the closed-

loop system through the box with gain N. From this block diagram, the closed-loop transfer 

function is obtained as 

 

 

 

 

 

 

 

 

    

    
 

             

                                  
 

We determine the value of constant N such that for a unit-step input r, the output y is unity as t 

approaches infinity. 

Note: if 

      
      

       
              

                           
 

Then: 

  
  

  
 

Therefore,    

  
   

   
        

The unit-step response of the system is shown in Figure 1.18. Notice that the maximum 

overshoot is very small; approximately 4%. The settling time is about 5 sec. 

 

 

 

 

 

 

 

 
Figure 1.18 Unit step response 

 

Figure 1.17 Control system with observer controller in the feedback 
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The Simulink tools of MATLAB program has been used to plot Figure 1.18 as shown in 

Figure 1.19 below: 

 

 

 

 

 

 

 

 

 

 

1.6 Quadratic Optimal Regulator System: 

An advantage of the quadratic optimal control method over the pole-placement method is that 

the former provides a systematic way of computing the state feedback control gain matrix. 

We shall now consider the optimal regulator problem that, given the system equation: 

 ̇                            

determines the matrix   of the optimal control vector: 

                                

so as to minimize the performance index: 

  ∫                                                 

 

 

 

where Q is a positive-definite (or positive-semidefinite) Hermitian or real symmetric matrix 

and R is a positive-definite Hermitian or real symmetric matrix. 

As will be seen later, the linear control law given by Equation (1.38) is the optimal control 

law. Therefore, if the unknown elements of the matrix   are determined so as to minimize the 

performance index, then             is optimal for any initial state x(0).  

The design steps may be stated as follows: 
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1. Solve the following Equation for the matrix P. [If a positive-definite matrix P (  

          exists (certain systems may not have a positive definite matrix P), the 

system is stable, or matrix A - Bk is stable.]. 

                                                      

 

2. Substitute this matrix P into the following Equation. The resulting matrix K is the 

optimal matrix, 

                                                                

Example 1.16: Consider the following system,  

 

[
 ̇ 

 ̇ 
]  [

  
  

] [
  

  
]  [

 
 
]   

 

determine the optimal feedback gain matrix   such that the following performance index is 

minimized: 

  ∫            
 

 

 

Where 

  [
  
  

]            

Solution: 

Design Step 1: Solve Equation 1.40 to find the matrix P: 

                    

From the given equation of J, R=[1]. 

[
  
  

] [
    

    
]  [

    

    
] [

  
  

]  [
    

    
] [

 
 
] [ ][  ] [

    

    
]  [

  
  

]  [
  
  

] 

This equation can be simplified to: 

[
  
    

]  [
   

   
]  [

  
     

      
 ]  [

  
  

]  [
  
  

] 

From which we obtain the following three equations: 

    
    

          

        
    

Solving these three equations, than: 

  [
√    

 √   
] 
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Design Step 2: The sole equation 1.41 to obtain k: 

         [ ][  ] [
√    

 √   
]  [ √   ]            

 

The optimal control signal is: 

          √      

Since the characteristic equation is  

|       |     √          

If    , the two closed loop poles are located at: 

              

The system is stable. 

Example 1.16: Consider the following system  

 

[
 ̇ 

 ̇ 

 ̇ 

]  [
   
 
 

 
  

 
  

] [
  
  

  

]  [
 
 
 
]   

  [   ] [
  
  

  

] 

determine the optimal feedback gain matrix   such that the following performance index is 

minimized: 

  ∫              
 

 

 

Where 

  [
     
   
   

]              

Then plot the unit step response of the given system. 

Solution:  

Design Step 1: Solve Equation 1.40 to find the matrix P: 

                    

   [
             

                   
             

] 

Design Step 2: The sole equation 1.41 to obtain k: 

         

   [               ] 
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Figure 1.20 shows the closed loop system: 

When the reference input r is a unit step function so the unit step response of the given system 

can be obtained using the following MATLAB program as shown in Figure 1.21. 

  

 

 

 

 

 

 

 

 

 

 

 

A=[0 1 0; 0 0 1;0 -2 -3]; 
B=[0;0;1]; 
C=[ 1 0 0]; 
D=[0]; 
K=[100 53.12 11.6711]; 
k1=K(1); k2=K(2); k3=K(3); 
AA=A-B*K; 
BB=B*k1; 
CC=C; 
DD=D; 
t=0:0.01:8; 
y=step(AA,BB,CC,DD,1,t); 
plot(t,y) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.20 the control system 

 

Figure 1.21 Unit step response 
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Chapter Two 

PID Control System Design 

2.1 Introduction:  

It is interesting to note that more than half of the industrial controllers in use today utilize PID 

or modified PID control schemes. 

Because most PID controllers are adjusted on-site, many different types of tuning rules have 

been proposed in the literature. Using these tuning rules, delicate and fine tuning of PID 

controllers can be made on-site. Also, automatic tuning methods have been developed and 

some of the PID controllers may possess on-line automatic tuning capabilities. Modified 

forms of PID control, such as I-PD control and two degrees of freedom PID control, are 

currently in use in industry. 

In this chapter we first present the design of a PID controlled system. We next discuss 

modified PID controls such as PI-D control and I-PD control. Then we introduce two-

degrees-of-freedom control systems, which can satisfy conflicting requirements that single-

degree-of-freedom control systems cannot. 

2.2 Tuning Rules for PID Controllers: 

Figure 2.1 shows a PID control of a plant. If a mathematical model of the plant can be 

derived, then it is possible to apply various design techniques for determining parameters of 

the controller that will meet the transient and steady-state specifications of the closed-loop 

system. However, if the plant is so complicated that its mathematical model cannot be easily 

obtained, then an analytical approach to the design of a PID controller is not possible. Then 

we must resort to experimental approaches to the tuning of PID controllers. 

 

 

 

 

Figure 2.1 plant with PID controller 
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The process of selecting the controller parameters to meet given performance specifications is 

known as controller tuning. Ziegler and Nichols suggested rules for tuning PID controllers 

(meaning to set values               ) based on experimental step responses or based on the 

value of K, that results in marginal stability when only proportional control action is used.  

2.2.1 Ziegler-Nichols Rules for Tuning PID Controller: 

Ziegler and Nichols proposed rules for determining values of the proportional gain   , 

integral time   , and derivative time    based on the transient response characteristics of a 

given plant. Such determination of the parameters of PID controllers or tuning of PID 

controllers can be made by engineers on-site by experiments on the plant. 

There are two methods called Ziegler-Nichols tuning rules: the first method and the second 

method. We shall give a brief presentation of these two methods. 

First Method 

In the first method, we obtain experimentally the response of the plant to a unit-step input, as 

shown in Figure 2.2. If the plant involves neither integrator(s) nor dominant complex-

conjugate poles, then such a unit-step response curve may look S-shaped, as shown in Figure 

2.3.This method applies if the response to a step input exhibits an S-shaped curve. Such step-

response curves may be generated experimentally or from a dynamic simulation of the plant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Unit step response of the plant 

 

Figure 2.3 S-shape response curve 
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The S-shaped curve may be characterized by two constants, delay time L and time constant T. 

The delay time and time constant are determined by drawing a tangent line at the inflection 

point of the S-shaped curve and determining the intersections of the tangent line with the time 

axis and line c ( t ) = K, as shown in Figure 2.3. 

Ziegler and Nichols suggested setting the values of               according to the formula 

shown in Table 2.1. 

 

 

 

 

 

 

 

 

 

 

Notice that the PID controller tuned by the first method of Ziegler-Nichols rules gives: 

        (  
 

   
    )                                     

Or 

         
 

 
(  

 

   
      )                                 

Or 

          
(  

 
 )

 

 
                                             

From eq. 2.3, it is clear that the PID controller has a pole at the origin and double zeros at s = 

-1/L. 

Second Method  

In the second method, we first set      and     . Using the proportional control action 

only (see Figure 2.4), increase    from 0 to a critical value     at which the output first 

 

Table 2.1 Ziegler-Nichols Tuning Rule Based on Step Response of plant (First Method) 
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exhibits sustained oscillations. (If the output does not exhibit sustained oscillations for 

whatever value     may take, then this method does not apply.) Thus, the critical gain     and 

the corresponding period     are experimentally determined (see Figure 2.5). Ziegler and 

Nichols suggested that we set the values of the parameters               according to the 

formula shown in Table 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that the PID controller tuned by the second method of Ziegler-Nichols rules gives: 

            (  
 

       
          )                                 

 

Figure 4 closed loop system with a proportional controller 

 

Figure 5 Sustained oscillations with period     

 

Table 2.2 Ziegler-Nichols Tuning Rule Based on Critical gain and Critical Period (Second Method) 
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Or 

                 

(  
 
   

)
 

 
                                             

Thus, the PID controller has a pole at the origin and double zeros at        ⁄ . 

Note that if the system has a known mathematical model (such as the transfer function), then 

we can use the root-locus method to find the critical gain     and the frequency of the 

sustained oscillations    , where          ⁄  . These values can be found from the crossing 

points of the root-locus branches with the   axis. (Obviously, if the root-locus branches do 

not cross the    axis, this method does not apply). 

Example 2.1: Consider the following system: 

      
 

           
 

Design a PID controller for the present system using a Ziegler-Nichols tuning rule for the 

determination of the values of parameters              . Then obtain a unit-step response 

curve and check to see if the designed system exhibits approximately 25% maximum 

overshoot. If the maximum overshoot is excessive (40% or more), make a fine tuning and 

reduce the amount of the maximum overshoot to approximately 25% or less. 

Solution: 

Since the plant has an integrator, we use the second method of Ziegler-Nichols tuning rules. 

By setting      and     , we obtain the closed-loop transfer function as follows: 

    

    
 

  

              
 

The value of K, that makes the system marginally stable so that sustained oscillation occurs 

can be obtained by use of Routh's stability criterion. Since the characteristic equation for the 

closed-loop system is: 

               

The Routh array becomes as follows: 
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Examining the coefficients of the first column of the Routh table, we find that sustained 

oscillation will occur if    = 30. Thus, the critical gain        . 

At    = 30, the auxiliary equation is: 

                  √   

Therefore; from which we find the frequency of the sustained oscillation     √ . Hence, 

the period of sustained oscillation is: 

    
  

 
 

  

√ 
        

Referring to Table 2.2, we determine               as follows: 

             

                 

                    

The transfer function of the PID controller is thus: 

        (  
 

   
    )       

         (  
 

      
         )                 

             
           

 
 

A block diagram of the control system with the designed PID controller is shown in Figure 

2.6. 

 

 

 

 

 

 

Next, let us examine the unit-step response of the system. The closed-loop transfer function 

C( s ) /R( s ) is given by: 

    

    
 

                   

                           
 

The unit-step response of this system can be obtained easily with MATLAB. See MATLAB 

Program below. The resulting unit-step response curve is shown in Figure 2.7. The maximum 

overshoot in the unit-step response is approximately 62%. The amount of maximum 

overshoot is excessive. It can be reduced by fine tuning the controller parameters. Such fine 

 

Figure 2.6 the system with designed PID controller 
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tuning can be made on the computer. We find that by keeping ,   = 18 and by moving the 

double zero of the PID controller to s = -0.65, that is, using the PID controller: 

         (  
 

      
        )         

         

 
 

 

the maximum overshoot in the unit-step response can be reduced to approximately 18% (see 

Figure 2.8. 

num=[0 0 6.3223 18 12.811]; 
den=[1 6 11.3223 18 12.811]; 
step(num,den) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Unit step response 

 

Figure 2.8 Unit step response 
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If the proportional gain K, is increased to 39.42, without changing the location of the double 

zero (s = -0.65), that is, using the PID controller: 

 

            (  
 

      
        )        

         

 
 

then the speed of response is increased, but the maximum overshoot is also increased to 

approximately 28%, as shown in Figure 2.9. Since the maximum overshoot in this case is 

fairly close to 25%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then the values of the PID control parameters are:                                    

It is interesting to observe that these values respectively are approximately twice the values 

suggested by the second method of the Ziegler-Nichols tuning rule. The important thing to 

note here is that the Ziegler-Nichols tuning rule has provided a starting point for fine tuning. 

Example 2.2: Consider the following system: 

      
  

          
 

 
Figure 2.8 Unit step response 
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Design a PID controller for the present system using a Ziegler-Nichols tuning rule for the 

determination of the values of parameters              . Then obtain a unit-step response 

curve and check to see if the designed system exhibits approximately 25% maximum 

overshoot. If the maximum overshoot is excessive (40% or more), make a fine tuning and 

reduce the amount of the maximum overshoot to approximately 25% or less. 

 

Solution: 

The given system does not have integrator part or complex poles, so that the first method of 

Ziegler-Nichols can be used. 

By using the following code in MATLAB the S-shaped response curve can be obtained as 

shown in Figure 2.9. 

num=[10]; 

den=[1 6 5]; 

step(num,den)  

 

 

 

 

 

 

 

 

 

 

 

 

From the figure 2.9, the values of the shape parameter are: 

                     

From table 2.1 the parameters of PID controller can be computed as: 

       
 

 
     

   

   
    

                 

                      

The transfer function of the PID controller is given as: 

 
Figure 2.9 S-Shaped Response of the given system  
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        (  
 

    
      )     

   

 
      

We can find the unit step response of the closed loop system by using the Simulink in 

MATLAP as shown in Figures 2.10 and 2.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From figure 2.10 we can see that the maximum overshoot is 10%. The PID parameters do not 

need fine tuning. 

Now we have to test if the second can be used or not. 

 
Figure 2.10 Unit Step Response of the given System 

 

Figure 2.11 Simulink of the closed loop system 
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Assume that                The characteristic equation can be written as: 

           

  
     

       
   

      (      )    

 

 

 

Using Routh Method: 

                       

                                    

                          

         

Since,          (negative) the second method cannot be used. 

 

Example 2.3: Consider the following system: 

      
          

           
 

Prove that neither first method nor the second method of Zeigler-Nichols Formula can be used 

to design the PID controller for the given system? 

Solution:    

Because of the presence of an integrator, the first method does not apply. Also, if the second 

method is attempted, the closed loop system with proportional controller will not exhibit 

sustained oscillation wherever value the gain      may take. This can be seen from the 

following analysis. Since the characteristic equation is: 

                           

or 

   (    ) 
  (     )        

The Routh array becomes: 
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The coefficients in the first column are positive for all values of positive   . Thus, in the 

present case the closed loop system will not exhibit sustained oscillations and therefore, the 

critical gain value     does not exist. Hence, the second method does not apply. 

 

  Example 2.3: Consider the electronic PID controller shown in Figure 2.12. Determine the 

values of R1, R2, R3, R4, Cl and of the controller such that the transfer function      , where: 

           (  
 

      
        )         (

         

 
) 

 

 

 

  

   

  

 

 

 

 

Solution: 

    

     
  

  

  
 

      
 

   
 

 

   
          

   
   

 
   

   
 

   

 
  

         
 

 
    

     
 

                  

     
       

   
 

    
    

 
    

 

 
 

     

    
  

  

  
 

Since: 

 

Figure 2.12 Electronic circuit of PID Controller  
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The       can be rewritten as: 

             (
         

 
)                          

If we assume that 
 

    
 

 

    
, then 

      
     

     
 

      

  
 
(  

 
    

)
 

 
                              

Compare eq. (I) and  eq. (II), we obtain that: 

 

    
 

 

    
      

      

  
         

If we assume that         , than              . 

If we assume that         , than              . 

And 

  

  
      

If we assume that         , than           

2.3 Modifications of PID Control Schemes: 

Consider the basic PID control system shown in Figure 2.13(a), where the system is subjected 

to disturbances and noises. Figure 2.13(b) is a modified block diagram of the same system. In 

the basic PID control system such as the one shown in Figure 2.13(b), if the reference input is 

a step function, then, because of the presence of the derivative term in the control action, the 

manipulated variable u(t) will involve an impulse function (delta function). In an actual PID 

controller, instead of the pure derivative term     we employ: 

   

      
 

where the value of   is somewhere around 0.1. Therefore, when the reference input is a step 

function, the manipulated variable u(t) will not involve an impulse function, but will involve a 

sharp pulse function. Such a phenomenon is called set-point kick. 
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2.3.1 PI-D Controller: 

To avoid the set-point kick phenomenon, we may wish to operate the derivative action only in 

the feedback path so that differentiation occurs only on the feedback signal and not on the 

reference signal. The control scheme arranged in this way is called the PI-D control. Figure 

2.14 shows a PI-D-controlled system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 a) PID controller system 

                b) Equivalent block diagram.   

 
Figure 2.14 PI-D controller System 
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From Figure 2.14, it can be seen that the manipulated signal U(s) is given by: 

       (  
 

   
)        (  

 

   
    )                    

Notice that in the absence of the disturbances and noises, the closed-loop transfer function of 

the basic PID control system [shown in Figure 2.13(b)] and the PI-D control system (shown in 

Figure 2.14) are given, respectively, by: 

    

    
 (  

 

   
    )

       

  (  
 
   

    )       
                    

    

    
 (  

 

   
)

       

  (  
 
   

    )       
                    

It is important to point out that in the absence of the reference input and noises, the closed-

loop transfer function between the disturbance D(s) and the output Y ( s ) in either case is the 

same and is given by; 

    

    
 

     

  (  
 
   

    )       
                

2.3.2 I-PD Control: 

Consider again the case where the reference input is a step function. Both PID control and PI-

D control involve a step function in the manipulated signal. Such a step change in the 

manipulated signal may not be desirable in many occasions. Therefore, it may be 

advantageous to move the proportional action and derivative action to the feedback path so 

that these actions affect the feedback signal only. Figure 2.15 shows such a control scheme. It 

is called the I-PD control. The manipulated signal is given by: 

 

     (
  

   
)        (  

 

   
    )                     

 

 

 

 

 

 

 

 

 
Figure 2.15 I-PD Control System 
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Notice that the reference input R(s) appears only in the integral control part. Thus, in I-PD 

control, it is imperative to have the integral control action for proper operation of the control 

system. 

The closed-loop transfer function 
    

    
  in the absence of the disturbance input and noise input 

is given by: 

    

    
 (

 

   
)

       

  (  
 
   

    )       
                     

It is noted that in the absence of the reference input and noise signals, the closed-loop transfer 

function between the disturbance input and the output is given by  

    

    
 

     

  (  
 
   

    )       
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Chapter Three 

“Control Systems Design by Root-Locus 

Method”  

3.1 Introduction: 

The primary objective of this chapter is to present procedures for the design and 

compensation of single-input-single-output linear time-invariant control systems. 

Compensation is the modification of the system dynamics to satisfy the given specifications. 

The approach to the control system design and compensation used in this chapter is the root-

locus approach. 

Control systems are designed to perform specific tasks. The requirements imposed on the 

control system are usually spelled out as performance specifications. The specifications may 

be given in terms of transient response requirements (such as the maximum overshoot and 

settling time in step response) and of steady-state requirements (such as steady-state error in 

following ramp input). 

The design by the root-locus method is based on reshaping the root locus of the system by 

adding poles and zeros to the system's open loop transfer function and forcing the root loci to 

pass through desired closed-loop poles in the s plane. The characteristic of the root-locus 

design is its being based on the assumption that the closed-loop system has a pair of dominant 

closed-loop poles. 

Setting the gain is the first step in adjusting the system for satisfactory performance. In many 

practical cases, however, the adjustment of the gain alone may not provide sufficient 

alteration of the system behaviour to meet the given specifications. As is frequently the case, 

increasing the gain value will improve the steady-state behaviour but will result in poor 

stability or even instability. It is then necessary to redesign the system (by modifying the 

structure or by incorporating additional devices or components) to alter the overall behaviour 
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so that the system will behave as desired. Such a redesign or addition of a suitable device is 

called compensation. A device inserted into the system for the purpose of satisfying the 

specifications is called a compensator. The compensator compensates for deficit performance 

of the original system. 

Figures 7.l (a) and (b) show compensation schemes commonly used for feedback control 

systems. Figure 7.l (a) shows the configuration where the compensator Gc(s) is placed in 

series with the plant. This scheme is called series compensation.  

An alternative to series compensation is to feed back the signal(s) from some element (s) and 

place a compensator in the resulting inner feedback path, as shown in Figure 7.l (b). Such 

compensation is called parallel compensation or feedback compensation. In this chapter we 

discuss series compensation in detail. 

 

 

 

 

 

 

 

 

 

 

3.2 Root-Locus Approach to Control System Design: 

The root-locus method is a graphical method for determining the locations of all closed-loop 

poles from knowledge of the locations of the open-loop poles and zeros as some parameter 

(usually the gain) is varied from zero to infinity. The method yields a clear indication of the 

effects of parameter adjustment. 

In practice, the root-locus plot of a system may indicate that the desired performance cannot 

be achieved just by the adjustment of gain. In fact, in some cases, the system may not be 

stable for all values of gain. Then it is necessary to reshape the root loci to meet the 

performance specifications. 

In designing a control system, if other than a gain adjustment is required, we must modify the 

original root loci by inserting a suitable compensator. Once the effects on the root locus of the 

addition of poles and/or zeros are fully understood, we can readily determine the locations of 

 
 

Figure 3.1 (a) Series Compensation. 

                 (b) Parallel Compensation.  
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the pole(s) and zero(s) of the compensator that will reshape the root locus as desired. In 

essence, in the design by the root-locus method, the root loci of the system are reshaped 

through the use of a compensator so that a pair of dominant closed-loop poles can be placed at 

the desired location. (Often, the damping ratio and undamped natural frequency of a pair of 

dominant closed-loop poles are specified). 

3.2.1 Effects of the Addition of Poles 

The addition of a pole to the open-loop transfer function has the effect of pulling the root 

locus to the right, tending to lower the system's relative stability and to slow down the settling 

of the response. (Remember that the addition of integral control adds a pole at the origin, thus 

making the system less stable). Figure 3.2 shows examples of root loci illustrating the effects 

of the addition of a pole to a single-pole system and the addition of two poles to a single-pole 

system. 

 

 

 

 

 

 

3.2.2 Effects of the Addition of Zeros 

The addition of a zero to the open-loop transfer function has the effect of pulling the root 

locus to the left, tending to make the system more stable and to speed up the settling of the 

response. (Physically, the addition of a zero in the feed forward transfer function means the 

addition of derivative control to the system. The effect of such control is to introduce a degree 

of anticipation into the system and speed up the transient response.) Figure 3.3 (a) shows the 

root loci for a system that is stable for small gain but unstable for large gain. Figures 3.3 (b), 

(c), and (d) show root-locus plots for the system when a zero is added to the open-loop 

 

Figure 3.2 (a) Root-locus plot of a single-pole system; 

                 (b) root-locus plot of a two-pole system; 

                 (c) root-locus plot of a three-pole system. 
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transfer function. Notice that when a zero is added to the system of Figure 3.3 (a), it becomes 

stable for all values of gain. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Lead Compensation  

There are many ways to realize continuous-time (or analogue) lead compensators, such as 

electronic networks using operational amplifiers, electrical RC networks, and mechanical 

spring-dashpot systems. 

Figure 3-4 shows an electronic circuit using operational amplifiers. The transfer function for 

this circuit was obtained as follows: 

 

  

 

 

 

 

 

 

 

 

Figure 3.3  (a) Root-locus plot of a three-pole system; (b), (c), and (d) root-       

locus plots showing effects of addition of a zero to the three-pole system. 

 

Figure 3.4 Electrical circuit of Lead Compensation 
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Where: 

                             
    

    
 

From Equation (7-I), we see that this network is a lead network if           , or      . It is a lag 

network if           . The pole-zero configurations of this network when            and      

      are shown in Figure 3-5(a) and (b), respectively. 

 

 

 

 

 

 

 

 

 

 

3.3.1 Lead Compensation Techniques Based on the Root-Locus 

Approach.  

The root-locus approach to design is very powerful when the specifications are given in terms 

of time-domain quantities, such as the damping ratio and undamped natural frequency of the 

desired dominant closed-loop poles, maximum overshoot, rise time, and settling time. 

Consider a design problem in which the original system either is unstable for all values of 

gain or is stable but has undesirable transient-response characteristics. In such a case, the 

reshaping of the root locus is necessary in the broad neighbourhood of the    axis and the 

origin in order that the dominant closed-loop poles be at desired locations in the complex 

plane. This problem may be solved by inserting an appropriate lead compensator in cascade 

with the feed forward transfer function. 

The procedures for designing a lead compensator for the system shown in Figure 3.6 by the 

root-locus method may be stated as follows: 

 

 

Figure 3.5: Zero pole configuration of a) Lead Compensator b) Lag Compensator  
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1. From the performance specifications, determine the desired location for the dominant 

closed-loop poles. 

2. By drawing the root-locus plot of the uncompensated system (original system), ascertain 

whether or not the gain adjustment alone can yield the desired closed loop poles. If not, 

calculate the angle deficiency 4.This angle must be contributed by the lead compensator if the 

new root locus is to pass through the desired locations for the dominant closed-loop poles. 

3. Assume the lead compensator       to be: 

        

  
 
 

  
 
  

                 

where   and   are determined from the angle deficiency.    is determined from the 

requirement of the open-loop gain. 

4. If static error constants are not specified, determine the location of the pole and zero of the 

lead compensator so that the lead compensator will contribute the necessary angle . If no 

other requirements are imposed on the system, try to make the value of   as large as possible. 

A larger value of   generally results in a larger value of    which is desirable. (If a particular 

static error constant is specified, it is generally simpler to use the frequency-response 

approach.) 

5. Determine the open-loop gain of the compensated system from the magnitude condition. 

Once a compensator has been designed, check to see whether all performance specifications 

have been met. If the compensated system does not meet the performance specifications, then 

repeat the design procedure by adjusting the compensator pole and zero until all such 

specifications are met. 

 

Example (3.1): Consider the system shown in Figure 3-7(a).The feed forward transfer 

function is: 
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The root-locus plot for this system is shown in Figure 3-7(b). The closed-loop transfer 

function becomes: 

     
 

       
 

 

(     √ )      √  
 

The closed loop poles are located at:          √  

The damping ratio of the closed-loop poles is 0.5.The undamped natural frequency of the 

closed loop poles is 2 rad/sec. The static velocity error constant is 2 sec
-1

.  

It is desired to modify the closed-loop poles so that an undamped natural frequency      

rad/sec is obtained, without changing the value of the damping ratio,      . 

The damping ratio of 0.5 requires that the complex-conjugate poles lie on the lines drawn 

through the origin making angles of      with the negative real axis. 

Since the damping ratio determines the angular location of the complex-conjugate closed loop 

poles, while the distance of the pole from the origin is determined by the undamped natural 

frequency    ,the desired locations of the closed-loop poles of this example problem are: 

       √  

A general procedure for determining the lead compensator is as follows: First, find the sum of 

the angles at the desired location of one of the dominant closed-loop poles with the open-loop 

poles and zeros of the original system, and determine the necessary angle   to be added so 

that the total sum of the angles is equal to  180°(2k + 1). The lead compensator must 

contribute this angle  . (If the angle   is quite large, then two or more lead networks may be 

needed rather than a single one.) 

 

 

 

 

 

 

 

 

 

 

If the original system has the open-loop transfer function G(s), then the compensated system 

will have the open-loop transfer function: 

 
Figure 3.7 
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          (  

  
 
 

  
 
  

)     

The next step is to determine the locations of the zero and pole of the lead compensator. There 

are many possibilities for the choice of such locations. In what follows, we shall introduce a 

procedure to obtain the largest possible value for  . First, draw a horizontal line passing 

through point P, the desired location for one of the dominant closed-loop poles. This is shown 

as line PA in Figure 3-8. Draw also a line connecting point P and the origin. Bisect the angle 

between the lines PA and PO, as shown in Figure 3-8. Draw two lines PC and PD that make 

angles      with the bisector PB. The intersections of PC and PD with the negative real axis 

give the necessary locations for the pole and zero of the lead network. The compensator thus 

designed will make point P a point on the root locus of the compensated system. The open-

loop gain is determined by use of the magnitude condition. 

In the present system, the angle of      at the desired closed-loop pole is: 

   (
 

      
)
          √ 

       

Thus, if we need to force the root locus to go through the desired closed-loop pole, the lead 

compensator must contribute       at this point. By following the foregoing design 

procedure, we determine the zero and pole of the lead compensator, as shown in Figure 3-9, to 

be: 

 

 

 

 

 

 

 

 

 

                                    

Or 

  
 

   
                

 

   
       

Thus   = 0.537. The open-loop transfer function of the compensated system becomes: 

            

     

     

 

     
 

        

             
 

 
Figure (3.8) 
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Where      . The root-locus plot for the compensated system is shown in Figure 3.9.The 

gain K is evaluated from the magnitude condition as follows: Referring to the root-locus plot 

for the compensated system shown in Figure 3.9, the gain   is evaluated from the magnitude 

condition as: 

 

 

 

 

 

 

  

 

 

 

 

 

 

|
       

             
|
       √ 

   

Or: 

K=18.7 

It follows that: 

     
          

             
 

The constant    of the lead compensator is: 

   
    

 
      

Hence         . The lead compensator, therefore, has the transfer function: 

          
        

        
     

     

     
 

If the electronic circuit using operational amplifiers as shown in Figure 3.4 is used as the lead 

compensator just designed, then the parameter values of the lead compensator are determined 

from: 

     

     
 

             

             
     

        

        
 

As shown in Figure 7.10, where we have arbitrarily chosen                       . 

 
Figure 3.9 Root-locus plot of the compensated system. 



67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The static velocity error constant    is obtained from the expression: 

      
    

              
    

 
          

             
           

Note that the third closed-loop pole of the designed system is found by dividing the 

characteristic equation by the known factors as follows: 

                                 √  (      √ )        

In what follows we shall examine the unit-step responses of the compensated and 

uncompensated systems with MATLAB. 

The closed-loop transfer function of the compensated system is: 

    

    
 

           

                         
 

           

                    
 

Hence, 

Numc=[0 0 18.7 54.23] 

Denc=[1 7.4 29.5 54.23] 

For the uncompensated system, the closed-loop transfer function is: 

    

    
 

 

       
 

 

Numc=[0 0 4] 

Denc=[1 2 4] 

 
Figure 3.10 Lead compensator circuit 
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MATLAB Program  produces the unit-step response curves for the two systems. The resulting 

plot is shown in Figure 3.11. Notice that the compensated system exhibits slightly larger 

maximum overshoot. The settling time of the compensated system is one-half that of the 

original system, as expected. 

 

 

% - - - - - - - - - - Unit-step response --------- 
% ***** Unit-step responses of compensated and uncompensated 
% systems ***** 
numc = [0 0 18.7 54.231]; 
denc = [1 7.4 29.5 54.231]; 
num = [0 0 41]; 
den = [ 1 2 41]; 
t = 0:0.05:5; 
[cl ,X1 t]= step(numc,denc,t); 
[c2,X2,t] = step(num,den,t); 
plot(t,cl ,t,cl ,'o',t,c2,t,c2,'x') 
grid 
title('Unit-Step Responses of Compensated and Uncompensated Systems') 
xlabel('t Sec') 
ylabel('0utputs cl and c2') 
text(0.7,1.32,'Compensated system') 
text(1.3,0.68,'Uncompensated system') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Lag Compensation 

The configuration of the electronic lag compensator using operational amplifiers is the same 

as that for the lead compensator shown in Figure 3.4. If we choose           in the circuit 

 

Figure 3.11 Unit-Step Responses of Compensated and Uncompensated Systems 
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shown in Figure 3.4, it becomes a lag compensator. Referring to Figure 3.4, the transfer 

function of the lag compensator is given by: 

     

     
  ̂ 

  
 
 

  
 
  

 

Where: 
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